Abstract

Abstract: Surface runoff constitutes a large percentage of Greenland Ice Sheet (GrIS) mass loss at present but is difficult to measure directly. This study provides a novel method to estimate surface runoff through remote sensing of supraglacial lake volumes. Because terminal, non-draining (consistently expanding during the melt season) lakes impound runoff from their surrounding contributing catchments, such changes reflect runoff produced within the catchment. To estimate supraglacial lake volumes, multi-temporal lake maps derived from Landsat-8 images are intersected with dry lake-bed topographic depressions (showing lake bathymetry) identified for two supraglacial catchments (~10 km2) in southwestern GrIS, using high-resolution (2 m) ArcticDEMs. Intersecting remotely sensed lake shorelines with their underlying ice surface topography yields multi-temporal lake volume changes, which are then compared with cumulative runoff as simulated by four Surface Mass Balance (SMB) models (HIRHAM5, MAR3.6, RACMO2.3, and MERRA-2). Comparison of cumulative lake infilling with SMB simulations for these two lakes over the period 8–31 July 2015 indicates that SMB models overestimated surface runoff by 106 – 123%. These large offsets improved after early July, overestimating runoff by 40 – 55%. The runoff delay function incorporated into the MAR3.6 model improves simulation of early melt season runoff, signifying the importance of integrating meltwater routing schemes into SMB models for improved understanding of Greenland supraglacial hydrology and surface mass balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.