Abstract

Fe3 O4 nanoparticles (NPs) with intrinsic peroxidase-like properties have attracted significant interest, although limitedinformation is available on the definite catalytic mechanism. Here, it is shown that both complexed hydroxyl radicals (•OH) and high-valent FeO species are attributed primarily to the peroxidase-like catalytic activity of Fe3 O4 NPs under acid conditions rather than only being caused by free •OH radicals generated through the iron-driven Fenton/Haber-Weiss reactions as previously thought. The low energy barrier of OO bond dissociation of H2 O2 /•OOH (0.14eV) and the high oxidation activity of surface FeO (0eV) due to the reduced state of Fe on the surface of Fe3 O4 NPs thermodynamically favor both the •OH and FeO pathways. By contrast, high-valent FeO species are the key intermediates in the catalytic cycles of natural peroxidase enzymes. Moreover, it is demonstrated that the enzyme-like activity of Fe3 O4 NPs can be rationally regulated by modulating the size, surface structure, and valence of active metal atoms in the light of this newly proposed nanozyme catalytic mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.