Abstract
As a model brominated hydrocarbon that may form brominated dioxins, we studied the surface-mediated, oxidative thermal degradation of 2-bromophenol on a supported copper oxide catalyst in a 1 mm i.d., fused silica flow reactor at a constant concentration of 90 ppm over a temperature range from 250 to 550 °C. Observed products included: dibenzo- p-dioxin (DD), 1-monobromodibenzo- p-dioxin (1-MBDD), dibromodibenzo- p-dioxin (DBDD), tribromodibenzo- p-dioxin (TrBDD), 4-monobromodibenzofuran (4-MBDF), 2,4,6-tribromophenol, 2,4- and 2,6-dibromophenol, and polybrominated benzenes. The results are compared and contrasted with previous work on surface catalyzed oxidative thermal degradation of 2-chlorophenol as well as our own work with the surface-catalyzed pyrolytic thermal degradation of 2-bromophenol. Typically 20 to 200× higher yields of PBDDs are observed for 2-bromophenol than for the analogous PCDDs for 2-chlorophenol. However the anticipated PBDF, 4,6-DBDF, was not observed and 4-MBDF was observed at very low yields. Surprisingly, the maximum yields of PBDDs were observed at higher temperatures than under pyrolytic conditions. This is attributed to regeneration of the catalytic surface due to the presence of oxygen. Higher yields of polybrominated phenols and polybrominated benzenes were also observed than for the analogous chlorinated phenols and benzenes from the oxidation of 2-chlorophenol. This can be attributed to the ease of bromination over chlorination based on the higher abundance of bromine atoms present for 2-bromophenol than chlorine atoms present for 2-chlorophenol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.