Abstract

AbstractSurface mass-balance data from the Kangerlussuaq transect (K-transect) located on the western part of the Greenland ice sheet near 67° N are presented. The series covers the period 1990-2003 and is the longest series of surface mass-balance measurements in Greenland. The surface mass-balance measurements cover an altitude range of 390-1850 m and show a linear increase of the specific mass balance, with a mass-balance gradient of 3.7 × 10–3 m m–1 and a mean equilibrium-line altitude of 1535 ma.s.l. Interannual variability shows a weak 4 yearly periodicity. In addition to the surface mass-balance data, automatic weather station data at an elevation of approximately 1010m are available for the period 1997-2002. These data are used to explain observed surface mass-balance anomalies over the same 5 years. It is shown that variations in shortwave radiation dominate interannual variability. The mean annual cycle of temperature is characterized by a maximum in summer around the melting point, leading to a mean summer outgoing longwave radiation of approximately 314 W–2. The mean annual cycle in wind speed shows a maximum in winter (on average around 8 m s–1) and a minimum in summer (on average around around 5 m s–1), which is characteristic for a katabatic forcing. During summer the net radiation is on average about 61 Wm–2, which is used for ice melting at a rate of typically 2 cm w.e.d-1. Net radiation contributes 84% of the total energy used for summer melting averaged over the 5 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call