Abstract

This paper provides time domain simulation and experimental results for surface location error (SLE) and surface roughness when machining under both stable (forced vibration) and unstable (period-2 bifurcation) conditions. It is shown that the surface location error follows similar trends observed for forced vibration, so zero or low error conditions may be selected even for period-2 bifurcation behavior. The surface roughness for the period-2 instability is larger than for stable conditions because the surface is defined by every other tooth passage and the apparent feed per tooth is increased. Good agreement is observed between simulation and experiment for stability, surface location error, and surface roughness results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.