Abstract
Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III–V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.