Abstract

The feasibility of a novel and simple layer-by-layer chemical deposition method for the preparation of nano-sized metal 8-hydroxyquinolate complexes has been investigated and reported. Uniform nanocrystalline films have been synthesized via dipping a substrate alternately in metal ion solution followed by ligand solution. The stoichiometry of the as-grown anhydrous Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complex crystals were confirmed from the metal analysis and molar stoichiometric ratio of metal ion to 8-hydroxyquinoline. This was characterized as 1:2 for the Co(II), Ni(II), Cu(II) and Zn(II)–quinolate complexes. The Fe(III)–quinolate thin film was found to exhibit a 1:3 ratio. Electron impact-mass spectra (EI-MS) of all the synthesized thin film metal quinolate complexes were recorded and the results refer to the existence of the molecular ion peak at the corresponding m/ z values. Confirmation of such stoichiometric 1:2 and 1:3 ratios were also evident from the (EI-MS) study. The deposited thin films were also subjected to analysis by a scanning electron microscope (SEM) and a particle size ⩾50 nm was detected. FT-IR and UV–Vis spectroscopy were further used to confirm the structure of the metal 8-hydroxyquinolate complexes. Thermal gravimetric analysis (TGA) was also used to follow up the possible thermal decomposition steps and to calculate the thermodynamic parameters of the nano-sized metal complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call