Abstract

We study regular wavelength scale arrays of metallic dimers. By employing dimers made up of two different sized discs, we are able to couple to array-based collective surface lattice resonances of both bright and dark, that is symmetric and antisymmetric, dimer modes and to show that the degree of asymmetry can be used to control the relative strength of the two surface-lattice modes. The collective nature of these excitations can even lead to an antisymmetric surface-lattice resonance that is stronger than the symmetric one; this is in stark contrast to the dark and bright nature of the underlying modes of the individual dimers. We verify these experimental findings, derived from extinction measurements, by comparison with both analytical and numerical modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.