Abstract
Ostwald ripening of sufficiently large (usually macroscopic) precipitates is the late stage of the diffusion decomposition of a supersaturated solid solution, occurring through the formation of fluctuations and subsequent growth of centers (nuclei) of a new phase. The paper describes a theoretical study of the Ostwald ripening of spherical precipitates of a newly formed phase at the grain boundary of finite thickness with the diffusion of impurity atoms from the grain interior to the grain boundary considered. The precipitate growth is assumed to be limited by the kinetics of impurity atom imbedding into the precipitate rather than by the impurity atom diffusion inside the grain boundary. The speed of diffusion growth of spherical precipitate located on the grain boundary is found. A system of equations which describes surface-kinetics-limited growth of Oswald ripening of spherical precipitates on the grain boundary is formulated. This system consists of the equation of growth rate of the precipitate, the kinetic equation for the precipitates size distribution function which is normalized by the precipitates density, and the equation of the balance of matter in the system (the law of conservation of matter). The law of conservation of matter takes into account the atoms of impurities which are in solid solutions of the grain boundary and the body of the grain as well as in the precipitates which is the specifics of our problem. The asymptotic time dependences are found for the average and critical precipitate radius, supersaturation of solid solution of impurity atoms in the grain boundary, precipitate size distribution function, precipitate density, and for the factor of grain boundary filling with precipitates (the area covered by the precipitates per unit area of the grain boundary) and the total number of impurity atoms in precipitates. The factor of grain boundary filling with precipitates is a characteristic of the two-dimensional Ostwald ripening problem. A discussion of the limits of validity of obtained results is given.
Highlights
Ostwald ripening of sufficiently large precipitates is the late stage of the diffusion decomposition of a supersaturated solid solution, occurring through the formation of fluctuations and subsequent growth of centers of a new phase
The paper describes a theoretical study of the Ostwald ripening of spherical precipitates of a newly formed phase at the grain boundary of finite thickness with the diffusion of impurity atoms from the grain interior to the grain boundary considered
The precipitate growth is assumed to be limited by the kinetics of impurity atom imbedding into the precipitate rather than by the impurity atom diffusion inside the grain boundary
Summary
SURFACE-KINETICS-LIMITED OSTWALD RIPENING OF SPHERICAL PRECIPITATES AT GRAIN BOUNDARIES. ВИЗРІВАННЯ ОСТВАЛЬДА СФЕРИЧНИХ ВИДІЛЕНЬ НА МІЖЗЕРЕННІЙ МЕЖІ, ЯКЕ ЛІМІТУЄТЬСЯ ПОВЕРХНЕВОЮ КІНЕТИКОЮ О.В. Суми 40000, Україна Визрівання Оствальда достатньо великих (звичайно макроскопічних) виділень – це остання, так звана пізня стадія дифузійного розпаду пересиченого твердого розчину, що відбувається шляхом флуктуаційного утворення і наступного росту центрів (зародків) нової фази. Теоретично розглянуто визрівання Оствальда сферичних виділень нової фази, розташованих на міжзеренній межі скінченної товщини, з урахуванням дифузійних потоків атомів домішки з глибини зерна до міжзеренної межі. Знайдено швидкість дифузійного росту сферичного виділення нової фази, розташованого на міжзеренній межі. Метою даної роботи є теоретичний аналіз ВО сферичних виділень нової фази, розташованих на міжзеренній межі скінченної товщини δ [42,43,44] з урахуванням дифузійних потоків атомів домішки з глибини зерна до міжзеренної межі. ШВИДКІСТЬ ДИФУЗІЙНОГО РОСТУ СФЕРИЧНОГО ВИДІЛЕННЯ НОВОЇ ФАЗИ, РОЗТАШОВАНОГО НА МІЖЗЕРЕННІЙ МЕЖІ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.