Abstract
Low-cost, practicable techniques are required to limit the release of volatile organic compound-containing fumigants such as 1,3-D to the atmosphere. In this study, we aimed to quantify 1,3-D diffusion and emission from laboratory soil columns maintained under realistic conditions and thereby assess the efficacy of soil irrigation as a technique for reducing emissions. In two soils (one relatively high, and one relatively low, in organic matter), irrigation led to a limiting of upward diffusion of the fumigant and to the maintenance of higher soil gas concentrations. Therefore, rather than being emitted from the column, the 1,3-D was maintained in the soil where it was ultimately degraded. As a consequence, emission of 1,3-D from the irrigated columns was around half of thatfrom the nonirrigated columns. It is concluded that surface irrigation represents an effective, low-cost, and readily practicable approach to lessening the environmental impact of 1,3-D fumigant use. In addition, the higher organic matter soil exhibited emissions of around one-fifth of the lower organic matter soil in both irrigated and nonirrigated treatments, due to markedly enhanced degradation of the fumigant. Organic matter amendment of soils may, therefore, also represent an extremely effective, relatively low-cost approach to reducing 1,3-D emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.