Abstract

Interfacial defects greatly influence the performance of perovskite solar cells (PSCs), and interface engineering is a powerful technique to promote the power conversion efficiency (PCE) of PSCs. Herein, an interfacial passivation strategy is developed employing cesium fluoride (CsF) to modify the surface of a perovskite film. Theoretical calculations suggest that the Cs+ and F− ions have a targeted passivation effect to decrease the defect density of the perovskite. Meanwhile, Cs+-formamidine+ (FA+) and F−–I− ion exchange can occur on the perovskite surface, which leads to the decline of the Fermi level of perovskite and reinforces the built-in potential of PSCs. Additionally, experiment results also confirm the reduction in the interfacial defects and the enhancement of the built-in potential. Consequently, the open-circuit voltage (Voc) of PSCs is increased from 1.07 to 1.12 V, contributing to the promotion of the PCE. Furthermore, the stability of PSCs is obviously improved as well owing to the suppressed phase transition of α-phase perovskite. Our findings provide guidelines for surface modification of perovskite crystals to enhance the performance and stability of PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call