Abstract

Poly(ethylene oxide), PEO, is widely exploited in biomedical applications, while phosphatidylcholine (PC) lipids (in the form of bilayers or liposomes) have been identified as very efficient boundary lubricants in aqueous media. Here we examine, using a surface force balance (SFB), the interactions between surface-adsorbed layers of PEO complexed with small unilamellar vesicles (SUVs, i.e. liposomes) or with bilayers of PC lipids, both well below and a little above their main gel-to-liquid phase-transition temperatures TM. The morphology of PEO layers (adsorbed onto mica), to which liposomes were added, was examined using atomic force microscopy (AFM) and cryo-scanning electron microscopy (cryo-SEM). Our results reveal that the PC lipids could attach to the PEO either as vesicles or as bilayers, depending on whether they were above or below TM. Under water (no added salt), excellent lubrication, with friction coefficients down to 10-3-10-4, up to contact stresses of 6.5 MPa (comparable to those in the major joints) was observed between two surfaces bearing such PEO-PC complexes. At 0.1 M KNO3 salt concentration (comparable to physiological salt levels), the friction between such surfaces was considerably higher, attributed to bridging by the polymer chains. Remarkably, such bridging could be suppressed and the friction could be restored to its previous low value if the KNO3 was replaced with NaNO3, as a result of the different PEO-mica ligation properties of Na+ compared to those of K+. Our results provide insight into the properties of PEO-PC complexes in potential applications, and large interfacial effects that can result from the seemingly innocuous replacement of K+ by Na+ ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call