Abstract

We developed two types of polyatomic cluster ion sources, one of which was a liquid cluster ion source using organic materials with a high-vapor pressure. Vapors of liquid material such as ethanol and water were ejected through a nozzle into a vacuum region, and liquid clusters were produced by an adiabatic expansion phenomenon. Another type was a cluster ion source using ionic liquids with a relatively low-vapor pressure. Positive and negative cluster ions were produced by a high-electric field emission. In addition, the interaction of polyatomic cluster ions with solid surfaces such as Si(100), SiO2, glass, and PMMA surfaces was investigated, and chemical sputtering was predominant for the Si(100) surfaces irradiated by ethanol cluster ion beams. Also, the irradiation damage of the Si(100) surfaces by ethanol and water cluster ion beams was smaller than that by Ar monomer ion irradiation at the same acceleration voltage. With regard to surface modification, PMMA surfaces were chemically modified by water cluster irradiation. Also, glass surfaces changed to electrically conductive surfaces by ionic liquid cluster ion irradiation. Furthermore, to demonstrate engineering applications of high-rate sputtering and low-damage irradiation by ethanol cluster ion beams, micro-patterning was performed on the Si surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.