Abstract
This paper presents an investigation into the drilling of micro-holes of diameter 0.3 mm in tool steel H13 by means of the Micro-EDM process. Scanning Electron Microscopy (SEM) and Scanning White Light Interferometry (SWLI) techniques are used to determine the influence of the drilling process parameters upon the surface roughness. The results reveal a series of randomly overlapped craters upon the machined surface, which represent the position and chronological sequence of individual sparks during the machining process. As the voltage and current increases, the crater appearance changes from a conical to a cylindrical shape, and its depth and diameter both increase. It is shown that surface roughness deteriorates as the pulse voltage increases. Finally a regression equation is established between the diameter of the crater and the pulse voltage, pulse current and pulse-on duration parameters. This equation enables the diameters of the craters, and hence the surface integrity of the machined surface, to be predicted for a given set of process parameters, and is therefore a valuable tool in achieving the goal of precision machining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.