Abstract
Tool flank wear during hard milling adversely affects surface integrity and, therefore, fatigue strength of machined components. Surface integrity and machining accuracy deteriorate when tool wear progresses. In this paper, surface integrity and its impact on endurance limit of AISI H13 tool steel (50 ± 1 HRC) by milling using PVD coated tools are studied. The evolutions of surface integrity including surface roughness, microhardness and microstructure were characterized at three levels of tool flank wear (VB = 0, 0.1mm, 0.2mm). At each level of tool flank wear, the effects of cutting speed, feed, and radial depth-of-cut on surface integrity were investigated respectively. Fatigue endurance limits of the machined surfaces at different reliability levels were calculated and correlated with the experimentally determined fatigue life. The good surface finish and significant strain-hardening on the machined surfaces enhance endurance limit, which enables machined components have a fatigue life over 106 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.