Abstract

Monodisperse silica particles (SiPs) were surface-modified with a newly designed reversible addition–fragmentation chain transfer (RAFT) agent having a triethoxysilane moiety, 6-(triethoxysilyl) 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate (EHT). Surface-initiated RAFT polymerization of styrene was carried out with the EHT-modified SiPs in the presence of a free RAFT agent. The polymerization proceeded in a living manner, producing SiPs coated with well-defined polystyrene of a target molecular weight with a graft density as high as 0.3 chains/nm2. Similarly, polymerizations of methyl methacrylate (MMA), N-isopropylacrylamide, and n-butyl acrylate were conducted, providing SiPs grafted with concentrated (high-density) polymer brushes. In all examined cases, the hybrid particles were highly dispersible in solvents for graft polymers, without causing any aggregations. Owing to exceptionally high uniformity and perfect dispersibility, these hybrid particles formed two- and three-dimensionally ordered ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.