Abstract

By now, it is well-known that concrete will lose strength after exposure to elevated temperature. In this case, the damaged concrete is extremely vulnerable with respect to ingress of water and aggressive compounds. Therefore the potential for the protection of concrete from excessive ingress of water after exposure to high temperature, as for instance in an accidental fire, has been investigated. So far, surface impregnation of concrete with silane has been proved to be beneficial to reduce water penetration. In this contribution, surface impregnation with silane was applied on concrete exposed to elevated temperature. The efficiency of surface impregnation with respect to absorption of water and salt solutions by concrete with different levels of damage induced by elevated temperature has been investigated in particular. Results indicate that the increased water absorption of damaged concrete can be reduced significantly by surface impregnation. A reduction of more than 90 % can be achieved. The effective chloride barrier established by surface impregnation can help to extend the service life of fire-exposed concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.