Abstract

The solar-driven conversion of CO2 to value-added products provides a promising route for solar energy storage and atmospheric CO2 remediation. In this report, a variety of supporting electrode materials were successfully modified with a [2,2′-bipyridine]-5,5′-bis(diazonium) rhenium complex through a surface-localized electropolymerization method. Physical characterization of the resulting multilayer films confirms that the coordination environments of the rhenium bipyridine tricarbonyl sites are preserved upon immobilization and that the polymerized catalyst moieties exhibit long-range structural order with uniform film growth. UV–vis studies reveal additional absorption bands in the visible region for the polymeric films that are not present in the analogous rhenium bipyridine complexes. Electrochemical studies with modified graphite rod electrodes show that the electrocatalytic activity of these films increases with catalyst loading up to an optimal value, beyond which electron and mass transport throu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call