Abstract

An analytical method is described for profiling lactate production in single cells via the use of coupled enzyme reactions on surface-grafted resazurin molecules. The immobilization of the redox-labile probes was achieved through chemical modifications on resazurin, followed by bio-orthogonal click reactions. The lactate detection was demonstrated to be sensitive and specific. The method was incorporated into a single-cell barcode chip for simultaneous quantification of aerobic glycolysis activities and oncogenic signaling phosphoproteins in cancer. The interplay between glycolysis and oncogenic signaling activities was interrogated on a glioblastoma cell line. Results revealed a drug-induced oncogenic signaling reliance accompanying shifted metabolic paradigms. A drug combination that exploits this induced reliance exhibited synergistic effects in growth inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call