Abstract

AbstractReverse time migration is often used to interpret acoustic or three‐component seismic recordings by creating an image of subsurface seismic reflectors. Here I describe elastic reverse time migration imaging functions that are cast as waveform misfit sensitivity kernels of contrasts in material parameters across hypothetical seismic discontinuities, that is, specular reflectors. The proposed “surface” imaging functions are theoretically applicable to either reflected or converted waves in order to estimate the location and reflectivity of these discontinuities. The surface imaging functions, as well as volumetric sensitivity kernels that target point diffractors, are tested on sets of synthetic surface array recordings that sample the 3‐D seismic wavefield on simple 2‐D structures generated using a 2.5‐D spectral element method. These tests illustrate that in contrast with the volumetric sensitivity kernels, the reflectivity is generally dominated by a high‐amplitude peak that coincides with input locations of discontinuities. Passive recordings of microseismicity, shot gathers, or a combination thereof can be potentially interpreted with the new surface imaging functions to yield useful reflectivity images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call