Abstract

Atomic force microscopy (AFM) was employed to characterize the surface chemistry distribution on individual polystyrene latex particles. The particles were obtained by surfactant-free emulsion polymerization and contained hydrophilic quaternary ammonium chloride, sodium sulfonate, or hydroxyethyl groups. The phase shift in dynamic force mode AFM is sensitive to charge/chemical interactions between an oscillating atomic force microscope tip and a sample surface. In this work, the phase imaging technique distinguished phase domains of 50-100 nm on the surfaces of dried latex particles in ambient air. The domains are attributed to the separation of ion-rich and ion-poor components of the polymer on the particle surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.