Abstract
Cryogen spray cooling is applied to protect epidermis from thermal damage in laser dermatology. However, R134a shows insufficient cooling capacity for minimizing the laser energy absorption by melanin in darkly pigmented human skin. By contrast, the cooling capacity of R404A can be improved with a low boiling point. This study examined the temporal and spatial variations in surface heat transfer during R404A spray cooling using a straight-tube nozzle with an expansion chamber. Substitution of R134a with R404A increases the maximum heat flux by 19%, whereas introducing an expansion chamber enhances the maximum heat flux by 18%. Results indicate that surface heat transfer during R404A spraying exhibits intense temporal and spatial non-uniformity. A sub-region of uniform cooling with a radius of 2 mm appears around the spray center with a high transient heat flux above 300 kW/m2. This finding can help physicians precisely control the therapy area with enhanced laser energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.