Abstract

A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. The surface transport, however, remains difficult to isolate from the bulk conduction in most existing TI crystals (particularly Bi2Se3, Bi2Te3 and Sb2Te3) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB6 the thickness-independent surface Hall effects and non-local transport, which persist after various surface perturbations. These results serve as proof that at low temperatures SmB6 has a metallic surface that surrounds an insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.