Abstract

In the present study, the effectiveness of using multiple slatted screens placed in front of a caisson porous breakwater to dissipate the incident wave energy is analyzed. To model the water flow through the slatted screens, a quadratic (nonlinear) pressure drop condition which involves both the inertial and drag effects is considered. Further, for thick porous structure, the well known Sollitt and Cross (1972) model is used. To handle the nonlinear boundary conditions, an iterative multi-domain boundary element method (BEM) is used. The numerical convergence of the multi-domain BEM based solutions is presented. Energy identities for flow past a single slatted screen, multiple slatted screens and for the present problem are derived. The study shows that the minimum reflection coefficient (<1%) and maximum wave energy dissipation (>98%) can be obtained by using four slatted screens. Further, for moderate values of perforation-effect Keulegan-Carpenter number (KC), the reflection coefficient attains maximum for b1λ≈n2,n=1,2,3,⋯ (b1 is the distance between the rigid caisson and the front slatted screen, λ is the incident wavelength) irrespective of the variations in the number of slatted screens. Further, the transmission coefficient, horizontal and vertical wave forces acting on the rigid caisson attain maximum for b1/λ≈0.55n, and minimum occurs for 2n+14<b1λ<3n+26,n=0,1,2,3,⋯. The Bragg resonance in the reflection coefficient occurs at Bragg value ≈1.6 irrespective of the variations of KC number. Moreover, the reflection coefficient increases around the Bragg value for higher values of KC number without altering the peak value in the reflection coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.