Abstract

The present study deals with the surface gravity wave interaction of a submerged composite wavy porous plate in the presence of a tunnel placed at a finite distance under the assumption of small amplitude theory and a two-dimensional framework. To solve the boundary value problem, a numerical method using the multi-domain boundary element method (MDBEM) is implemented. Hydrodynamic characteristics of interest such as reflection coefficient and transmission coefficient are computed and studied for a wide range of dimensionless wavenumber and relative plate lengths. Various parametric studies are conducted to emphasize the effect of structural parameters like the number of relative ripple wavelengths, relative ripple amplitude, and relative submergence depth. Dimensionless wave force coefficients acting on the plate and the tunnel are calculated and investigated. The study reveals that the presence of composite wavy porous plate has a significant effect in the mitigation of wave-exerted force on the tunnel. Optimized results are shown for the efficient design of coupled breakwater and tunnel models, which can be used beneficially to protect against the severity of wave action in similar applications of ocean engineering in marine environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.