Abstract

We report a new robust and green facile platform for nonoxidizing chemical grafting to simultaneously improve antifouling and antibacterial properties of thin film composite (TFC) polyamide (PA) reverse osmosis (RO) membranes. In this work, alginate dialdehyde (ADA) was used as a green platform to graft chlorhexidine (CH), a nonoxidizing chemical, on TFC-RO membrane surface. A synergistic effect due to ADA and CH grafting was revealed. The modified membrane surfaces were characterized using XPS, FT-IR, AFM, SEM-EDS, contact angle, and zeta potential analysis. A simple two-step Schiff base reaction was performed. Improved salt rejection performances were observed for the grafted PA membranes at the expense of negligible flux drop for the CH-ADA-PA membranes (38 to 42 L m-2 h-1) compared with the pristine PA membrane (45 L m-2 h-1). All the CH-ADA-PA membranes had excellent antibacterial activity against E. coli along with a highly superior resistance to the formation of biofilms. Organic fouling behaviors with a protein (bovine serum albumin, BSA) and a surfactant (dodecyl trimethylammonium bromide, DTAB) were investigated as typical foulants for the grafted PA membranes. The results indicated that the CH-ADA-PA membranes showed the best antifouling performance followed by the ADA-PA membranes, the pristine membrane being the most inferior. Hence, these results pave the way for a new robust and green bioinspired route for practical application in RO membrane fouling control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.