Abstract

In this work, surface modification of silk fibroin was conducted by grafting dimethylaminoethyl methacrylate (DMAEMA) via ATRP to produce well controlled grafting silk. First, the amino groups and hydroxyl groups on the side chains of the silk fibroin reacted with 2-bromoisobutyryl bromide (BriB-Br) to obtain efficient initiator for ATRP. Subsequently, the functional silk fibroin was used as macroinitiator of DMAEMA in 1,2-dichlorobenzene in conjunction with CuBr/N,N,N',N",N" -pentamethyldiethylenetriamine (PMDETA) as a catalyst system. FT-IR characterization of the modified silk substrate showed a peak corresponding to DMAEMA indicating that the polymer had been formed on the silk surface. Following the polymerization, the tertiary amino groups on the grafted silk fibroin were quaternized to produce a large concentration of quaternary ammonium groups, which endowed the silk substrate with potential antibacterial surface. The graft chains were cleaved by acid hydrolysis and analyzed by gel permeation chromatography (GPC). The GPC results indicated that the graft layer were well-controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.