Abstract

Nickel-rich layered oxide cathode material LiNixCoyMnzO2 (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni2+ with ammonia and the reduction reaction of KMnO4, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g-1 at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.