Abstract

Surface molecular motion of monodisperse polystyrene (PS) films was examined by scanning viscoelasticity microscopy (SVM) in conjunction with lateral force microscopy (LFM). The dynamic storage modulus, ƴ, and loss tangent, tan d , at a PS film surface with a smaller number-average molecular weight, Mn, than 40k were found to be smaller and larger than those for the bulk sample even at room temperature, meaning that the PS surface is in a glass–rubber transition state or a fully rubbery one at this temperature if the Mn, is small. In order to elucidate quantitatively how vigorous the molecular motion at the PS surface is, SVM and LFM measurements were made at various temperatures. The glass transition temperature, Tg, at the surface wasdiscerned to be markedly lower than its bulk Tg, and the discrepancy of Tg between surface and bulk becomes larger with the decreasing Mn. Such an intensive activation of thermal molecular motion at the PS surfaces can be explained in terms of an excess free volume in the vicinit of the film surfaceinduced by the preferential segregation of chain end groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.