Abstract
Two distinct surface-enhanced Raman (SER) spectra of tryptophan depending on the surface adsorption geometry were obtained by using colloidal gold nanoparticles reduced by borohydride and citrate ions. According to the vibrational assignments based on DFT simulations, the SER spectra of tryptamine and 3-indolepropionic acid, and the pH dependence of tryptophan SER spectrum, we found that some indole ring vibrations are very sensitive to the surface adsorption geometry of the molecules. With citrate-reduced gold colloids, tryptophan and related molecules mainly adsorb via the protonated amine group while maintaining a perpendicular geometry of the indole ring to the surface. However, a flat geometry of the indole ring to the surface is preferred on the borohydride-reduced gold colloids where the surface adsorption occurs mainly through the indole ring π electrons. By comparing our results with previous reports on the SER spectra of tryptophan on various silver and gold surfaces, we propose a general adsorption model of tryptophan on metal nanosurfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.