Abstract

To date, the application of RNA therapeutics to hematologic malignancies has been challenging owing to the resistance of blood cancer cells against conventional transfection methods. Herein, triple-targeting moiety-functionalized polymeric small interfering RNA (siRNA) nanoparticles were systematically developed for efficient targeted delivery of RNA therapeutics to hematologic cancer cells. Polymeric siRNAs were synthesized using rolling circle transcription and were surface-functionalized with three types of targeting moieties─a natural ligand and two additional combinations of cell-specific antibodies─for tunable targetability. As a proof of concept, the optimization of the hyaluronic acid/antibody conjugation ratio was performed for selective intracellular delivery to various non-Hodgkin's lymphoma (NHL) cell lines (Daudi, Raji, Ramos, and Toledo cells) via receptor-mediated endocytosis. The engineered nanoparticles showed almost 10-fold enhanced NHL-specific intracellular delivery and induced significant in vitro anticancer effects. This multitargeted nanoparticle platform may effectively support the intracellular delivery of polymeric siRNA sequences, and thus promote therapeutic effects in hematopoietic malignancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.