Abstract

ABSTRACTThe past few decades have seen extraordinary gain in interest for bio‐based products, driven by the intensifying call of the society for petrochemical material replacement and developing materials with next‐to‐no environmental impact. Cellulose, which is an abundantly available “green” material, can be derived from plant fibers and tailored for a plethora of possible uses where it can be used as a substrate or as a filler material. However, emerging technologies and product advancements necessitate the search for materials that are small, biodegradable, lightweight, and strong. Nanocellulose, which can be obtained through as mechanical and chemical production methods with tensile strength and Young's modulus of up to 0.5 and 130 GPa, respectively, proves to be the answer that they were looking for. However, the inherent hydrophilic nature of nanocellulose limited its potential widespread application. Surface modifications of nanocellulose to alter and diminish its hydrophilicity were done to address the aforementioned issues. In this article, we had reviewed on different types of surface modifications and their resulting impact on the properties of nanocellulose and their effect on polymer composites. The importance of nanocellulose in emerging applications such as biosensor, nanoremediation, papermaking, and automotive as well as the current state of the industry and the commercialization progress of nanocellulose were also discussed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46065.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.