Abstract

Two carboxyalkylphosphonic acids (HOOC(CH(2))(n)P(O)(OH)(2), n = 2 for 3-PPA and n = 9 for 10-PDA) have been deposited onto 1D zinc oxide (ZnO) nanowires and bare ZnO wafers to form stable self-assembled monolayers (SAMs). The samples were systematically characterized using wettability, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). 3-PPA was bound to the ZnO surfaces mainly through the CO(2)H headgroup, and 10-PDA formed self-assembled monolayers on the nanoscaled ZnO surface through the PO(3)H(2) headgroups. To verify the potential utilization of the functionalized surfaces in the construction of biosensors or bioelectronics, IgG (immunoglobulin G) protein immobilization through SAM bridging was demonstrated. This work expands the application of phosphonic acid-based surface functionalization on sensing and optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.