Abstract

In this research, recycled polyacrylonitrile fibers (PANFs) acquired from the textile recycling process were amino-functionalized in one simple step by means of ethylenediamine (EDA). The amino-functionalized polyacrylonitrile fibers (AF-PANFs) were utilized for adsorption of Hg(II) ions from aquatic media. Temperature and contact time during the synthesis were optimized by the Central Composite Design (CCD) method. FE-SEM, EDS, BET, and FT-IR analysis, and pHZPC measurement were conducted to characterize the features of the AF-PANFs. The average diameter of raw fiber was 20 μm, which increased 20 percent after functionalizing. The impact of independent parameters on the adsorption process was investigated using the Box-Behnken Design (BBD) method during the batch experiments. The column tests were conducted in a semi-continuous system with the removal efficiency of over 99% for various initial concentrations after specific cycles. Freundlich, Langmuir, UT, Redlich-Peterson, and Temkin isotherm models were employed to analyze the relation between the final concentration of Hg(II) (Co) and the equilibrium adsorption capacity (qe) of the AF-PANFs. According to the isotherm models and experimental results, the maximum qe of the AF-PANFs was 1116 mg g−1 at initial Hg(II) concentration of 850 mg L−1, contact time of 120 min, solution pH of 6, and at 40 °C. Kinetic and thermodynamic studies illustrated the approximate equilibrium time and endothermicity or exothermicity of the process. Regeneration of the AF-PANFs was accomplished for seven times without efficiency drop. The superb performance of the AF-PANFs in the presence of co-existing ions did not decline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call