Abstract

Membranes showing monomodal pore size distributions with mean pore diameters of 23, 33, and 60 nm are chemically functionalized using silanes with varying chain length and functional groups like amino, alkyl, phenyl, sulfonate, and succinic anhydrides. Their influence on the morphology, pore structure, and gas flow is investigated. For this, single-gas permeation measurements at pressures around 0.1 MPa are performed at temperatures ranging from 273 to 353 K using He, Ne, Ar, N2, CO, CO2, CH4, C2H4, C2H6, and C3H8. Results show pore size and pore volume linearly depending on the length of functional molecules, as expected for monolayer deposition. However, the gas flow through functionalized membranes is disproportionally decreased up to a factor of around 10. Hence, the decreased pore size and pore volume cannot explain the large decrease in flow. Furthermore, there is no specific dependency between the decrease in flow and temperature or gas type other than the relation proposed by Knudsen (√RTM)-1. Considering the large variety of functional molecules used, it is very surprising that no correlations between the type of functional group and the flow have been found. The decrease in flow, however, is strongly dependent on the chain length of the silanes (factor of 10 at ∼2 nm length). This leads to the conclusion that the observed effect is not caused by sorption driven processes. It is proposed that steric interactions between functional groups and gas molecules lead to increased residence times on the surface and longer molecular trajectories, which, in turn, lead to a decrease in flow. In membrane design, any surface modification should, therefore, make use of functionalizing agents with chain length as short as possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call