Abstract

A novel method of surface modification of solids was first developed via iron(III)-mediated atom transfer radical polymerization with activators generated by electron transfer (AGET ATRP) on the surfaces of chitosan nanospheres (CTSNSs) with an average diameter of 80 nm using FeCl3·6H2O as the catalyst, PPh3 as the ligand, and ascorbic acid (VC) as the reducing agent in the presence of a limited amount of air. The homopolymer poly(methyl methacrylate) (PMMA) and amphiphilic block copolymer poly(methyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PMMA-b-P(PEGMA)) were grafted onto the surfaces of the CTSNSs. Well-defined polymer chains were grown from the CTSNS surfaces to yield individual nanospheres composed of a chitosan core and a well-defined, densely grafted outer PMMA or PMMA-b-P(PEGMA) layer. The kinetics of surface-initiated AGET ATRP of MMA in the presence of a limited amount of air was investigated. A linear kinetic plot for the homopolymer, linear increase of molecular...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.