Abstract
In this study are presented evidences for the functionalization of polypropylene surfaces accomplished in a sequential process: argon- or oxygen-plasma enhanced generation of free radical sites on polypropylene surfaces was followed by “in situ” gas phase derivatization in the absence of plasma using ethylene diamine, or propylene diamine; and an “in situ”, gas phase derivatization using oxallyl chloride or “ex situ” derivatization in the presence of glutaraldehyde. The free radicals’ presence on the plasma-exposed polypropylene surfaces was confirmed using “in situ” sulfur dioxide or nitric oxide labeling techniques. It was shown that the free radical sites readily react under “in situ” conditions with the stable chain-precursor components and generate the desired spacer-chain molecules revealed by ESCA analysis. Functionalized polypropylene substrates were used for immobilization of α-chymotrypsin in the presence of spacer-chain molecules. The activity of the immobilized α-chymotrypsin was found to be comparable to the activity of the free enzyme when the spacer molecules have been used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.