Abstract
The pervasiveness of microplastics (MPs), which can absorb pharmaceuticals and personal care products (PPCPs), has a certain impact on pollutant migration in natural waters. The adsorption behaviors of PPCPs on the aged polypropylene (PP) followed the pseudo-second-order kinetics and Langmuir isotherm, and the adsorption capacity (qe) on the aged PP was much higher than that on the fresh PP. The Weber-Morris and Boyd models confirmed that the liquid-film and intra-particle diffusion affected the adsorption of PPCPs on the aged PP while the surface diffusion was a rate-limiting step for the fresh PP. The analysis of SEM-EDS, BET, FT-IR, and XPS further showed that changes in the type and content of the surface functional groups of PP led to differences in adsorption capacity and adsorption interactions. The Dragon-descriptor-based LFER and the quantum-chemical-descriptor-based QSAR models reflected the difference in adsorption interaction mechanisms. The examined models showed that the adsorption of the fresh PP toward PPCPs relied on hydrophobic and hydrogen bonding interaction, while for the aged PP electrostatic interaction and hydrogen bonding controlled the adsorption. The findings clarified interactions between PPCPs and MPs and provided a theoretical basis for the assessment of environmental behavior and ecological risk when MPs and PPCPs coexist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.