Abstract

Surface fuel deposition and decomposition rates are important to fire management and research because they can define the longevity of fuel treatments in time and space and they can be used to design, build, test, and validate complex fire and ecosystem models useful in evaluating management alternatives. We determined rates of surface fuel litterfall and decomposition for a number of major forest types that span a wide range of biophysical conditions in the northern Rocky Mountains, USA. We measured fuel deposition for more than 10 years with semi-annual collections of fallen biomass sorted into six fuel components (fallen foliage, twigs, branches, large branches, logs, and all other canopy material). We gathered this material using a network of seven to nine, 1-m2 litter traps installed at 28 plots that were established on seven sites with four plots per site. We measured decomposition for only fine fuels using litter bags installed on five of the seven sites and monitored for biomass loss from the bags each year for 3 years. Deposition and decomposition rates are summarized by plot, cover type, and habitat type series. We also present various temporal and spatial properties of litterfall and decomposition fluxes across the six fuel components.Dataset for this publication

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call