Abstract

The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors of the hydrogels do not conform to Amontons’ law, F= μW, that well describes the friction of many solids. The frictional force and its dependencies of on load are quite different depending on the chemical structures of the gels, surface properties of the opposing substrates, and the measurement condition. The gel friction is explained in terms of interfacial interaction, either attractive or repulsive, between the polymer chain and the solid surface. According to this model, friction is ascribed to the viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chain from the substrate appears as friction. Surface adhesion between glass particles and gels measured by AFM showed a good correlation with the friction, which support the repulsion–adsorption model proposed by the authors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.