Abstract
The use of multifunctional wood for decorative purpose has grown increasingly popular in recent years. In this study, fast-growing poplar wood was treated with dye (0.5%) and flame retardant (0, 10, 20, and 30%) simultaneously to enhance its visual characteristic and safety. The dynamic wettability and surface free energy of wood samples were studied using S-D wetting model and van Oss–Chaudhury–Good (vOCG) method, respectively. Dye uptake, drug load, color difference, and combustion performance were determined. The treated wood was also characterized by infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the proposed treatment yields favorable adhesive spreading and penetration ability at the wood surface. The surface free energy of treated wood was higher than that of untreated wood, and the dye uptake, drug load, color difference, and limited oxygen index all increased after the proposed combination treatment compared to dye-only treated wood. The results also indicated that the flame retardant reacted chemically with the wood as the dye and flame retardant molecules diffused into the cell cavity, wood vessel, and aperture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.