Abstract
Accurate modeling of contact stiffness is crucial in predicting the dynamic behavior and chatter vibration of spindle–toolholder system for high-speed machining centers. This paper presents a fractal theory-based contact model of spindle–toolholder joint to obtain the contact stiffness and its real contact area. Topography of the contact surfaces of spindle–toolholder joint is fractal featured and determined by fractal parameters. Asperities in micro-scale are considered as elastic or plastic deformation. Then, the contact stiffness, the real contact area, the elastic contact force, and the plastic contact force of the whole contact surface are calculated by integrating the micro asperities. The relationship of the contact stiffness and the drawbar force follows a power law, in which the power index is determined by the fractal parameters. Experiments are conducted to verify the efficiency of the proposed model. The results from the fractal contact model of spindle–toolholder joint have good agreement with those of experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.