Abstract

In this paper, we describe the construction of a new neutron surface force confinement cell (NSFCC). The NSFCC is equipped with hydraulically powered in situ, temporally stable, force control system for simultaneous neutron reflectometry studies of nanoconfined complex fluid systems. Test measurements with deuterated toluene confined between two opposing diblock copolymer (polystyrene+poly 2-vinylpyridine) coated quartz substrates demonstrate the capabilities of the NSFCC. With increasing hydraulically applied force, a series of well-defined decreasing separations were observed from neutron reflectivity measurements. No noticeable changes in the hydraulic pressure used for controlling the surface separation were observed during the measurements, demonstrating the high stability of the apparatus. This newly designed NSFCC introduces a higher level of control for studies of confinement and consequent finite size effects on nanoscale structure in a variety of complex fluid and soft condensed matter systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.