Abstract
Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or resistant to bacterial attachment and biofilm formation. Samples of the treated surfaces (sand-blasted, sanded, and electropolished) were exposed to natural bacterial populations from chicken carcass rinses to allow growth of bacteria and development of biofilms on the surfaces. The kinetics of bacterial growth during surface exposure was followed by UV-visible spectrophotometry, and counts of bacteria and early biofilm formation were measured following scanning electron microscopy (SEM). The surface morphology of the samples was analyzed by atomic force microscopy (AFM) with samples from each of the batches of treatments used in the SEM studies. Relative differences in the surface morphology, including fractal dimensions, Z ranges, roughness, and other measurements corresponded by treatment with the differences in reduction of bacterial counts shown by SEM. The surface types varied in affinity for bacteria, and both physical and electrochemical treatments improved resistance of stainless steel to bacterial attachment. Electropolished stainless steel was the least rough surface and showed significantly fewer bacterial cells and beginning biofilm formations than the other treated surfaces. Food safety could be improved if bacterial populations could be reduced during processing by increasing the use of materials that are resistant to bacterial contamination. These findings will aid equipment manufacturers and processors in selecting materials and finishes that are most resistant to bacteria and biofilm formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.