Abstract

In high-speed circuits, skin effects and dielectric properties are important factors for signal degradation considerations, especially in the microwave frequency region. When surface finishes are applied to prevent traces from oxidation, the electrical properties of traces are affected. In this work, experimental study and finite element method (FEM) based full wave simulation are used to investigate the effects of hot air solder leveling (HASL) and its alternatives on signal integrity. Classical interconnect structures, microstrip line, and differential mode coupled microstrip lines subjected to different finishes are investigated. Our work reveals that the net conductor loss that results from surface finishes is the dominant factor in signal degradation when the clock frequency is within the microwave frequency region. For microstrip line, the influence of surface finishes on signal distortion is negligible; for differential mode coupled microstrip lines, however, the surface finish effects, especially those with high resistivity, can lead to significant signal distortions. These findings are expected to have strong implications when designing high-speed circuits that meet strict timing requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call