Abstract

Due to a lack of crystalline structures and grain boundaries, metallic glasses exhibit extremely high strength and superior resistance to corrosion. They are also supposed to be resistant against displacive irradiation due to their inherent disordered structure, thereby are potential candidates for applications in irradiation environments. In this work, the irradiation effects of Zr- and Ti- based bulk metallic glasses (BMGs) under heavy ions irradiation were investigated. The results showed that the Zr-based BMG is more resistant to the Cl ion irradiation with no structural transition and distinct damage subjected to high irradiation fluence. In contrast, the Ti-based BMG exhibits unique damage morphology with respect to the Zr-based BMG and other reported metallic glasses material. Two kinds of damage pits in micrometer scale form on the irradiated surface, and distinct viscous flow takes place. The formation mechanism of the unique irradiation damage feature is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.