Abstract

Introduction: Hydrogen fuel cell is a promising renewable energy technology. Proton exchange membranes (PEMs) are an essential component of the fuel cell. Although the top surface nature of PEMs directly relates to the durability and efficiency of PEM fuel cells (PEMFC), there has been very limited attention on the chemical compositions and their distribution at the membrane surface. Thus, this study reports the surface characterization of poly(styrene sulfonic acid) (PSSA)-grafted poly(ethylene-co-tetrafluoroethylene) polymer electrolyte membranes (ETFE-PEMs) for fuel cell applications using S2p X-ray photoelectron spectroscopic (XPS) analysis. Methods: The ETFE-PEMs were prepared by radiation-induced grafting and subsequent sulfonation. The surface features of ETFE-PEMs with grafting degrees (GDs) of 55-101% were characterized using the survey-wide and narrow scans of S2p XPS. Results: The surface concentration of sulfur slightly decreased with increasing GDs. This interesting result has not been reported in the other graft-type PEMs. The four-component model of narrow scan deconvolution exhibited more reasonable results than the two-component model, in which the sulfonic acid groups (SO-3) slightly increased with increasing GD , not as the case observed by wide scan spectra due to the presence of by-products. Conclusion: The PSSA grafts were mainly generated inside the bulk rather than at the surface possibly due to the morphological changes. Moreover, the less presence of SO-3 group on the membrane surface despite the large GD values (GD = 55-101%) suggests the advanced electrolyte properties and interfacial stability for fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.