Abstract
There is a need to gather rich, real-time tactile information to enhance prosthetic hand performance during object manipulation. To that end, a highly stretchable liquid metal tactile sensor was designed, manufactured, and integrated into the fingertip of an i-limb Ultra prosthetic hand. With this novel tactile sensor, the feasibility of real-time slip detection and prevention of a grasped object was demonstrated. Furthermore, this liquid metal tactile sensor was used to distinguish between five different surface patterns with high accuracy using three different classification algorithms: K Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF). The K-nearest neighbors (KNN) classifier produced the highest classification accuracy of 98% to distinguish between five different surface textures. Taken together, this novel prosthetic fingertip tactile sensor has the potential to improve grasp control and object manipulation operations for upper limb amputees. Additionally, this paper documents the first time that a liquid metal tactile sensor has been used to distinguish between different surface features, to the best knowledge of the authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.