Abstract
AbstractSurface exfoliation was observed on single-crystal silicon surface under the action of compressed plasma flow (CPF). This phenomenon is mainly attributed to the strong transient thermal stress impact induced by CPF. To gain a better understanding of the mechanism, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution after energy deposition. After computation with finite element method, J integral parameter was applied as the criterion for fracture initiation evaluation. It was demonstrated that the formation of surface exfoliation calls for specific material, crack depth, and CPF parameter. The results are potentially valuable for plasma/matter interaction understanding and CPF parameter optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.