Abstract

Confined fluid properties are mainly determined by interfacial phenomena characterized by surface quantities. Based on a simple model of Lennard-Jones particles confined in a cylindrical pore, this study introduces a grand potential surface quantity to quantify the difference in the thermodynamic pressure between the bulk and the confined fluids. The usual surface tension gamma defined as this grand potential difference for the same chemical potential in both confined and bulk states is generally strongly dependent on both the chemical potential and temperature. It is proposed here to introduce another surface quantity zeta which measures the thermodynamic pressure difference between confined and bulk states for identical densities. It is shown that this quantity is much less dependent on confined fluid density or chemical potential. It is actually constant along the gas-like and liquid-like adsorption/desorption branches for an irreversible isotherm (hysteresis), with a different value for each branch. For reversible supercritical isotherms, zeta is shown to remain constant in the low and high density parts of the isotherm. This independence on chemical potential (or equivalently fluid density) is believed to be of great interest for practical applications when one desires to calculate thermodynamic quantities such as the usual surface tension gamma or the thermodynamic pressure of a confined fluid for any given chemical potential and temperature. Such calculations are required to determine fundamental properties such as metastability or coexistence. The effects of temperature, fluid/substrate interaction strength, and pore size are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.